Serveur d'exploration Santé et pratique musicale

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Early musical training is linked to gray matter structure in the ventral premotor cortex and auditory-motor rhythm synchronization performance.

Identifieur interne : 001031 ( Main/Exploration ); précédent : 001030; suivant : 001032

Early musical training is linked to gray matter structure in the ventral premotor cortex and auditory-motor rhythm synchronization performance.

Auteurs : Jennifer Anne Bailey ; Robert J. Zatorre ; Virginia B. Penhune

Source :

RBID : pubmed:24236696

Descripteurs français

English descriptors

Abstract

Evidence in animals and humans indicates that there are sensitive periods during development, times when experience or stimulation has a greater influence on behavior and brain structure. Sensitive periods are the result of an interaction between maturational processes and experience-dependent plasticity mechanisms. Previous work from our laboratory has shown that adult musicians who begin training before the age of 7 show enhancements in behavior and white matter structure compared with those who begin later. Plastic changes in white matter and gray matter are hypothesized to co-occur; therefore, the current study investigated possible differences in gray matter structure between early-trained (ET; <7) and late-trained (LT; >7) musicians, matched for years of experience. Gray matter structure was assessed using voxel-wise analysis techniques (optimized voxel-based morphometry, traditional voxel-based morphometry, and deformation-based morphometry) and surface-based measures (cortical thickness, surface area and mean curvature). Deformation-based morphometry analyses identified group differences between ET and LT musicians in right ventral premotor cortex (vPMC), which correlated with performance on an auditory motor synchronization task and with age of onset of musical training. In addition, cortical surface area in vPMC was greater for ET musicians. These results are consistent with evidence that premotor cortex shows greatest maturational change between the ages of 6-9 years and that this region is important for integrating auditory and motor information. We propose that the auditory and motor interactions required by musical practice drive plasticity in vPMC and that this plasticity is greatest when maturation is near its peak.

DOI: 10.1162/jocn_a_00527
PubMed: 24236696


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Early musical training is linked to gray matter structure in the ventral premotor cortex and auditory-motor rhythm synchronization performance.</title>
<author>
<name sortKey="Bailey, Jennifer Anne" sort="Bailey, Jennifer Anne" uniqKey="Bailey J" first="Jennifer Anne" last="Bailey">Jennifer Anne Bailey</name>
<affiliation>
<nlm:affiliation>Concordia University.</nlm:affiliation>
<wicri:noCountry code="no comma">Concordia University.</wicri:noCountry>
<wicri:noCountry code="no comma">Concordia University.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Zatorre, Robert J" sort="Zatorre, Robert J" uniqKey="Zatorre R" first="Robert J" last="Zatorre">Robert J. Zatorre</name>
</author>
<author>
<name sortKey="Penhune, Virginia B" sort="Penhune, Virginia B" uniqKey="Penhune V" first="Virginia B" last="Penhune">Virginia B. Penhune</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24236696</idno>
<idno type="pmid">24236696</idno>
<idno type="doi">10.1162/jocn_a_00527</idno>
<idno type="wicri:Area/Main/Corpus">001085</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001085</idno>
<idno type="wicri:Area/Main/Curation">001085</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001085</idno>
<idno type="wicri:Area/Main/Exploration">001085</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Early musical training is linked to gray matter structure in the ventral premotor cortex and auditory-motor rhythm synchronization performance.</title>
<author>
<name sortKey="Bailey, Jennifer Anne" sort="Bailey, Jennifer Anne" uniqKey="Bailey J" first="Jennifer Anne" last="Bailey">Jennifer Anne Bailey</name>
<affiliation>
<nlm:affiliation>Concordia University.</nlm:affiliation>
<wicri:noCountry code="no comma">Concordia University.</wicri:noCountry>
<wicri:noCountry code="no comma">Concordia University.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Zatorre, Robert J" sort="Zatorre, Robert J" uniqKey="Zatorre R" first="Robert J" last="Zatorre">Robert J. Zatorre</name>
</author>
<author>
<name sortKey="Penhune, Virginia B" sort="Penhune, Virginia B" uniqKey="Penhune V" first="Virginia B" last="Penhune">Virginia B. Penhune</name>
</author>
</analytic>
<series>
<title level="j">Journal of cognitive neuroscience</title>
<idno type="eISSN">1530-8898</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adult (MeSH)</term>
<term>Auditory Perception (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Learning (MeSH)</term>
<term>Magnetic Resonance Imaging (MeSH)</term>
<term>Motor Cortex (anatomy & histology)</term>
<term>Motor Cortex (growth & development)</term>
<term>Motor Cortex (physiology)</term>
<term>Music (MeSH)</term>
<term>Nerve Fibers, Unmyelinated (physiology)</term>
<term>Organ Size (MeSH)</term>
<term>Practice, Psychological (MeSH)</term>
<term>Professional Competence (MeSH)</term>
<term>Psychomotor Performance (MeSH)</term>
<term>Task Performance and Analysis (MeSH)</term>
<term>Time Factors (MeSH)</term>
<term>Young Adult (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adulte (MeSH)</term>
<term>Analyse et exécution des tâches (MeSH)</term>
<term>Apprentissage (MeSH)</term>
<term>Compétence professionnelle (MeSH)</term>
<term>Cortex moteur (anatomie et histologie)</term>
<term>Cortex moteur (croissance et développement)</term>
<term>Cortex moteur (physiologie)</term>
<term>Facteurs temps (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Imagerie par résonance magnétique (MeSH)</term>
<term>Jeune adulte (MeSH)</term>
<term>Musique (MeSH)</term>
<term>Neurofibres non-myélinisées (physiologie)</term>
<term>Perception auditive (MeSH)</term>
<term>Performance psychomotrice (MeSH)</term>
<term>Taille d'organe (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomie et histologie" xml:lang="fr">
<term>Cortex moteur</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomy & histology" xml:lang="en">
<term>Motor Cortex</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Cortex moteur</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Motor Cortex</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Cortex moteur</term>
<term>Neurofibres non-myélinisées</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Motor Cortex</term>
<term>Nerve Fibers, Unmyelinated</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adult</term>
<term>Auditory Perception</term>
<term>Humans</term>
<term>Learning</term>
<term>Magnetic Resonance Imaging</term>
<term>Music</term>
<term>Organ Size</term>
<term>Practice, Psychological</term>
<term>Professional Competence</term>
<term>Psychomotor Performance</term>
<term>Task Performance and Analysis</term>
<term>Time Factors</term>
<term>Young Adult</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Adulte</term>
<term>Analyse et exécution des tâches</term>
<term>Apprentissage</term>
<term>Compétence professionnelle</term>
<term>Facteurs temps</term>
<term>Humains</term>
<term>Imagerie par résonance magnétique</term>
<term>Jeune adulte</term>
<term>Musique</term>
<term>Perception auditive</term>
<term>Performance psychomotrice</term>
<term>Taille d'organe</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Evidence in animals and humans indicates that there are sensitive periods during development, times when experience or stimulation has a greater influence on behavior and brain structure. Sensitive periods are the result of an interaction between maturational processes and experience-dependent plasticity mechanisms. Previous work from our laboratory has shown that adult musicians who begin training before the age of 7 show enhancements in behavior and white matter structure compared with those who begin later. Plastic changes in white matter and gray matter are hypothesized to co-occur; therefore, the current study investigated possible differences in gray matter structure between early-trained (ET; <7) and late-trained (LT; >7) musicians, matched for years of experience. Gray matter structure was assessed using voxel-wise analysis techniques (optimized voxel-based morphometry, traditional voxel-based morphometry, and deformation-based morphometry) and surface-based measures (cortical thickness, surface area and mean curvature). Deformation-based morphometry analyses identified group differences between ET and LT musicians in right ventral premotor cortex (vPMC), which correlated with performance on an auditory motor synchronization task and with age of onset of musical training. In addition, cortical surface area in vPMC was greater for ET musicians. These results are consistent with evidence that premotor cortex shows greatest maturational change between the ages of 6-9 years and that this region is important for integrating auditory and motor information. We propose that the auditory and motor interactions required by musical practice drive plasticity in vPMC and that this plasticity is greatest when maturation is near its peak. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24236696</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>08</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1530-8898</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>26</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2014</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Journal of cognitive neuroscience</Title>
<ISOAbbreviation>J Cogn Neurosci</ISOAbbreviation>
</Journal>
<ArticleTitle>Early musical training is linked to gray matter structure in the ventral premotor cortex and auditory-motor rhythm synchronization performance.</ArticleTitle>
<Pagination>
<MedlinePgn>755-67</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1162/jocn_a_00527</ELocationID>
<Abstract>
<AbstractText>Evidence in animals and humans indicates that there are sensitive periods during development, times when experience or stimulation has a greater influence on behavior and brain structure. Sensitive periods are the result of an interaction between maturational processes and experience-dependent plasticity mechanisms. Previous work from our laboratory has shown that adult musicians who begin training before the age of 7 show enhancements in behavior and white matter structure compared with those who begin later. Plastic changes in white matter and gray matter are hypothesized to co-occur; therefore, the current study investigated possible differences in gray matter structure between early-trained (ET; <7) and late-trained (LT; >7) musicians, matched for years of experience. Gray matter structure was assessed using voxel-wise analysis techniques (optimized voxel-based morphometry, traditional voxel-based morphometry, and deformation-based morphometry) and surface-based measures (cortical thickness, surface area and mean curvature). Deformation-based morphometry analyses identified group differences between ET and LT musicians in right ventral premotor cortex (vPMC), which correlated with performance on an auditory motor synchronization task and with age of onset of musical training. In addition, cortical surface area in vPMC was greater for ET musicians. These results are consistent with evidence that premotor cortex shows greatest maturational change between the ages of 6-9 years and that this region is important for integrating auditory and motor information. We propose that the auditory and motor interactions required by musical practice drive plasticity in vPMC and that this plasticity is greatest when maturation is near its peak. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bailey</LastName>
<ForeName>Jennifer Anne</ForeName>
<Initials>JA</Initials>
<AffiliationInfo>
<Affiliation>Concordia University.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zatorre</LastName>
<ForeName>Robert J</ForeName>
<Initials>RJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Penhune</LastName>
<ForeName>Virginia B</ForeName>
<Initials>VB</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>MOP-220211</GrantID>
<Agency>Canadian Institutes of Health Research</Agency>
<Country>Canada</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>11</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Cogn Neurosci</MedlineTA>
<NlmUniqueID>8910747</NlmUniqueID>
<ISSNLinking>0898-929X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001307" MajorTopicYN="Y">Auditory Perception</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007858" MajorTopicYN="Y">Learning</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008279" MajorTopicYN="N">Magnetic Resonance Imaging</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009044" MajorTopicYN="N">Motor Cortex</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="Y">anatomy & histology</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009146" MajorTopicYN="Y">Music</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D036421" MajorTopicYN="N">Nerve Fibers, Unmyelinated</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009929" MajorTopicYN="N">Organ Size</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011214" MajorTopicYN="N">Practice, Psychological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011361" MajorTopicYN="N">Professional Competence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011597" MajorTopicYN="Y">Psychomotor Performance</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013647" MajorTopicYN="N">Task Performance and Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055815" MajorTopicYN="N">Young Adult</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>11</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>11</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>8</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24236696</ArticleId>
<ArticleId IdType="doi">10.1162/jocn_a_00527</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Bailey, Jennifer Anne" sort="Bailey, Jennifer Anne" uniqKey="Bailey J" first="Jennifer Anne" last="Bailey">Jennifer Anne Bailey</name>
<name sortKey="Penhune, Virginia B" sort="Penhune, Virginia B" uniqKey="Penhune V" first="Virginia B" last="Penhune">Virginia B. Penhune</name>
<name sortKey="Zatorre, Robert J" sort="Zatorre, Robert J" uniqKey="Zatorre R" first="Robert J" last="Zatorre">Robert J. Zatorre</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SanteMusiqueV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001031 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001031 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SanteMusiqueV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24236696
   |texte=   Early musical training is linked to gray matter structure in the ventral premotor cortex and auditory-motor rhythm synchronization performance.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24236696" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a SanteMusiqueV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Mar 8 15:23:44 2021. Site generation: Mon Mar 8 15:23:58 2021